KotiRyhmätKeskusteluLisääAjan henki
Etsi sivustolta
Tämä sivusto käyttää evästeitä palvelujen toimittamiseen, toiminnan parantamiseen, analytiikkaan ja (jos et ole kirjautunut sisään) mainostamiseen. Käyttämällä LibraryThingiä ilmaiset, että olet lukenut ja ymmärtänyt käyttöehdot ja yksityisyydensuojakäytännöt. Sivujen ja palveluiden käytön tulee olla näiden ehtojen ja käytäntöjen mukaista.

Tulokset Google Booksista

Pikkukuvaa napsauttamalla pääset Google Booksiin.

Ladataan...

Statistical decision problems : selected concepts and portfolio safeguard case studies

Tekijä: Michael Zabarankin

JäseniäKirja-arvostelujaSuosituimmuussijaKeskimääräinen arvioKeskustelut
1-7,735,091 (3.5)-
Statistical Decision Problems presents a quick and concise introduction into the theory of risk, deviation and error measures that play a key role in statistical decision problems. It introduces state-of-the-art practical decision making through twenty-one case studies from real-life applications. The case studies cover a broad area of topics and the authors include links with source code and data, a very helpful tool for the reader. In its core, the text demonstrates how to use different factors to formulate statistical decision problems arising in various risk management applications, such as optimal hedging, portfolio optimization, cash flow matching, classification, and more.   The presentation is organized into three parts: selected concepts of statistical decision theory, statistical decision problems, and case studies with portfolio safeguard. The text is primarily aimed at practitioners in the areas of risk management, decision making, and statistics. However, the inclusion of a fair bit of mathematical rigor renders this monograph an excellent introduction to the theory of general error, deviation, and risk measures for graduate students. It can be used as supplementary reading for graduate courses including statistical analysis, data mining, stochastic programming, financial engineering, to name a few. The high level of detail may serve useful to applied mathematicians, engineers, and statisticians interested in modeling and managing risk in various applications.… (lisätietoja)
Viimeisimmät tallentajatknol
-
Ladataan...

Kirjaudu LibraryThingiin nähdäksesi, pidätkö tästä kirjasta vai et.

Ei tämänhetkisiä Keskustelu-viestiketjuja tästä kirjasta.

Ei arvosteluja
ei arvosteluja | lisää arvostelu
Sinun täytyy kirjautua sisään voidaksesi muokata Yhteistä tietoa
Katso lisäohjeita Common Knowledge -sivuilta (englanniksi).
Teoksen kanoninen nimi
Alkuteoksen nimi
Teoksen muut nimet
Alkuperäinen julkaisuvuosi
Henkilöt/hahmot
Tärkeät paikat
Tärkeät tapahtumat
Kirjaan liittyvät elokuvat
Epigrafi (motto tai mietelause kirjan alussa)
Omistuskirjoitus
Ensimmäiset sanat
Sitaatit
Viimeiset sanat
Erotteluhuomautus
Julkaisutoimittajat
Kirjan kehujat
Alkuteoksen kieli
Kanoninen DDC/MDS
Kanoninen LCC

Viittaukset tähän teokseen muissa lähteissä.

Englanninkielinen Wikipedia

-

Statistical Decision Problems presents a quick and concise introduction into the theory of risk, deviation and error measures that play a key role in statistical decision problems. It introduces state-of-the-art practical decision making through twenty-one case studies from real-life applications. The case studies cover a broad area of topics and the authors include links with source code and data, a very helpful tool for the reader. In its core, the text demonstrates how to use different factors to formulate statistical decision problems arising in various risk management applications, such as optimal hedging, portfolio optimization, cash flow matching, classification, and more.   The presentation is organized into three parts: selected concepts of statistical decision theory, statistical decision problems, and case studies with portfolio safeguard. The text is primarily aimed at practitioners in the areas of risk management, decision making, and statistics. However, the inclusion of a fair bit of mathematical rigor renders this monograph an excellent introduction to the theory of general error, deviation, and risk measures for graduate students. It can be used as supplementary reading for graduate courses including statistical analysis, data mining, stochastic programming, financial engineering, to name a few. The high level of detail may serve useful to applied mathematicians, engineers, and statisticians interested in modeling and managing risk in various applications.

Kirjastojen kuvailuja ei löytynyt.

Kirjan kuvailu
Yhteenveto haiku-muodossa

Current Discussions

-

Suosituimmat kansikuvat

Pikalinkit

Arvio (tähdet)

Keskiarvo: (3.5)
0.5
1
1.5
2
2.5
3
3.5 1
4
4.5
5

Oletko sinä tämä henkilö?

Tule LibraryThing-kirjailijaksi.

 

Lisätietoja | Ota yhteyttä | LibraryThing.com | Yksityisyyden suoja / Käyttöehdot | Apua/FAQ | Blogi | Kauppa | APIs | TinyCat | Perintökirjastot | Varhaiset kirja-arvostelijat | Yleistieto | 204,794,008 kirjaa! | Yläpalkki: Aina näkyvissä