KotiRyhmätKeskusteluLisääAjan henki
Etsi sivustolta
Tämä sivusto käyttää evästeitä palvelujen toimittamiseen, toiminnan parantamiseen, analytiikkaan ja (jos et ole kirjautunut sisään) mainostamiseen. Käyttämällä LibraryThingiä ilmaiset, että olet lukenut ja ymmärtänyt käyttöehdot ja yksityisyydensuojakäytännöt. Sivujen ja palveluiden käytön tulee olla näiden ehtojen ja käytäntöjen mukaista.
Hide this

Tulokset Google Booksista

Pikkukuvaa napsauttamalla pääset Google Booksiin.

The Principles of Mathematical Analysis…
Ladataan...

The Principles of Mathematical Analysis (International Series in Pure &… (vuoden 1976 painos)

– tekijä: Walter Rudin (Tekijä)

JäseniäKirja-arvostelujaSuosituimmuussijaKeskimääräinen arvioKeskustelut
619727,965 (4.12)-
The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.… (lisätietoja)
Jäsen:hiwigiwi
Teoksen nimi:The Principles of Mathematical Analysis (International Series in Pure & Applied Mathematics)
Kirjailijat:Walter Rudin (Tekijä)
Info:McGraw-Hill Publishing Company (1976), Edition: 3rd, 342 pages
Kokoelmat:Textbooks, Oma kirjasto
Arvio (tähdet):
Avainsanoja:Mathematics, Analysis

Teoksen tarkat tiedot

Principles of Mathematical Analysis (tekijä: Walter Rudin)

Ladataan...

Kirjaudu LibraryThingiin, niin näet, pidätkö tästä kirjasta vai et.

Ei tämänhetkisiä Keskustelu-viestiketjuja tästä kirjasta.

englanti (5)  tanska (1)  Kaikki kielet (6)
Näyttää 1-5 (yhteensä 6) (seuraava | näytä kaikki)
The copy of Principles of Mathematical Analysis by Walter Rudin that I own is interesting in one way; it states that it is the Indian Edition. Now I don’t know much about publishing, but the biggest issue for me was whether or not the book was in English since I don’t know any Indian languages. I mean, I suppose the paper making up the book is slightly thinner and perhaps it uses a different measure of size, but other than that it didn’t need to say that on the cover.

This mathematical book is much like any other mathematical textbook that I own and have read, it starts with the basics and builds upon those basics in a systematic manner. The book contains proofs of theorems and practice problems, making it a very good resource.

I have heard that this book is used as a textbook in classes, but I never had to take a class in Analysis. As I might have mentioned long ago, all of the books that I read are only for my own amusement. However, it would be neat if I also learned something along the way.

The book delivers in being amusing and informative. I suppose it might be less amusing if this was a book I was assigned, but that is beside the point. In being informative, the book contains eleven chapters and covers subjects from The Real and Complex Number Systems to Lebesgue Theory. Finally, the book has a bibliography, an index, and a list of the special symbols used in the book. ( )
  Floyd3345 | Jun 15, 2019 |
Rudin is exact, specific, and direct. This is a harsh and austere text, but allows for very meditative readings. ( )
  alexanme | Dec 9, 2018 |
Indeholder "Preface", "Chapter 1: The Real and Complex Number Systems", " Introduction", " Dedekind cuts", " Real numbers", " The extended real number system", " Complex numbers", " Exercises", "Chapter 2: Elements of Set Theory", " Finite, countable, and uncountable sets", " Metric spaces", " Compact sets", " Perfect sets", " Exercises", "Chapter 3: Numerical Sequences and Series", " Fundamental properties of sequences", " Subsequences", " The Cauchy criterion", " Upper and lower limits", " Some special sequences", " Series", " Series of nonnegative terms", " The number e", " The root and ratio tests", " Power series", " Partial summation", " Absolute convergence", " Addition and multiplication of series", " Rearrangements", " Exercises", "Chapter 4: Continuity", " Introduction", " The limit of a function", " Continuous functions", " Continuity and compactness", " Discontinuities", " The Bolzano-Weierstrass theorem", " Monotonic functions", " Infinite limits and limits at infinity", " Exercises", "Chapter 5: Differentiation", " The derivative of a function", " The mean value theorems", " The continuity of derivatives", " L'Hospital's rule", " Derivatives of higher order", " Taylor's theorem", " Exercises", "Chapter 6: The Riemann-Stieltjes Integral", " Definition and existence of the integral", " The integral as a limit of sums", " The scope of Stieltjes's integration", " The fundamental theorem of calculus", " Functions of bounded variation", " Generalization of the integral", " Some further theorems on integration", " Curves, and the length of a curve", " Exercises", "Chapter 7: Sequences and Series of Functions", " Discussion of main problem", " Uniform convergence", " Uniform convergence and continuity", " Uniform convergence and integration", " Uniform convergence and differentiation", " Equicontinuous families of functions", " The Stone-Weierstrass theorem", " Exercises", "Chapter 8: Further Topics in the Theory of Series", " Power series", " The exponential and logarithmic functions", " The trigonometric functions", " Fourier series", " Exercises", "Chapter 9: Functions of Several Variables", " Continuous transformations of metric spaces", " Euclidean spaces", " Continuous functions of several real variables", " Partial derivatives", " Linear transformations and determinants", " The inverse function theorem", " The implicit function theorem", " Functional dependence", " Exercises", "Chapter 10: The Lebesgue Theory", " Set functions", " Construction of the Lebesgue measure", " Measure spaces", " Measurable functions", " Simple functions", " Integration", " Comparison with the Riemann integral", " Functions of Class L^2", " Exercises", "Bibliography", "List of Frequently Occurring Symbols and Abbreviations", "Index".

En superklassiker indenfor feltet og også den første, så den er nærmest kult. "It was easy to say, and often true, that anyone who could survive a year of Rudin was a real mathematician."
Bogen er ret hård kost uden ret mange eksempler, beviser som mest er hints og skitser, og så en stak øvelser, som er benhårde. ( )
  bnielsen | Nov 12, 2016 |
I used this for my Analysis course. It's very succinct so it's good for reviewing stuff. I can't imagine learning this on my own but that's just me.
1 ääni kreps | Jul 7, 2008 |
The longest sustained rigorous thinking I've ever done on a subject. Analysis is beautiful. ( )
  leeinaustin | Feb 27, 2008 |
Näyttää 1-5 (yhteensä 6) (seuraava | näytä kaikki)
ei arvosteluja | lisää arvostelu
Sinun täytyy kirjautua sisään voidaksesi muokata Yhteistä tietoa
Katso lisäohjeita Common Knowledge -sivuilta (englanniksi).
Kanoninen teoksen nimi
Tiedot englanninkielisestä Yhteisestä tiedosta. Muokkaa kotoistaaksesi se omalle kielellesi.
Alkuteoksen nimi
Teoksen muut nimet
Alkuperäinen julkaisuvuosi
Henkilöt/hahmot
Tärkeät paikat
Tärkeät tapahtumat
Kirjaan liittyvät elokuvat
Palkinnot ja kunnianosoitukset
Tiedot englanninkielisestä Yhteisestä tiedosta. Muokkaa kotoistaaksesi se omalle kielellesi.
Epigrafi (motto tai mietelause kirjan alussa)
Omistuskirjoitus
Ensimmäiset sanat
Sitaatit
Viimeiset sanat
Erotteluhuomautus
Julkaisutoimittajat
Kirjan kehujat
Alkuteoksen kieli
Canonical DDC/MDS
The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.

No library descriptions found.

Kirjan kuvailu
Yhteenveto haiku-muodossa

Pikalinkit

Suosituimmat kansikuvat

Arvio (tähdet)

Keskiarvo: (4.12)
0.5
1 2
1.5
2 1
2.5 1
3 12
3.5 1
4 21
4.5 1
5 30

Oletko sinä tämä henkilö?

Tule LibraryThing-kirjailijaksi.

 

Lisätietoja | Ota yhteyttä | LibraryThing.com | Yksityisyyden suoja / Käyttöehdot | Apua/FAQ | Blogi | Kauppa | APIs | TinyCat | Perintökirjastot | Varhaiset kirja-arvostelijat | Yleistieto | 157,101,449 kirjaa! | Yläpalkki: Aina näkyvissä